Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Journal of Medical Instrumentation ; (6): 16-20, 2015.
Article in Chinese | WPRIM | ID: wpr-310287

ABSTRACT

This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.


Subject(s)
Humans , Cardiovascular System , Heart-Assist Devices , Hemodynamics , Models, Theoretical
2.
Journal of Biomedical Engineering ; (6): 1050-1056, 2014.
Article in Chinese | WPRIM | ID: wpr-234460

ABSTRACT

The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.


Subject(s)
Algorithms , Assisted Circulation , Fuzzy Logic , Heart-Assist Devices , Magnetic Phenomena , Magnetics
3.
Journal of Biomedical Engineering ; (6): 617-622, 2013.
Article in Chinese | WPRIM | ID: wpr-352198

ABSTRACT

In order to achieve auxiliary timing of ventricular assisting device to automatically track the ECG signals, we designed a set of ECG acquisition circuit in our study for the first time. Then we carried out ECG acquisition, smoothing filter and QRS detection on the LabVIEW. With the QRS signal as a benchmark, the control system immediately triggered ventricular assisting device to trigger the heart to contract for ejection for about 300 ms, and then to assist to make it relax. The practical effects of the experiment proved that ECG acquisition circuit had the feature of strong anti-interference, and control system had no false QRS detection and no false triggering of assist device. This achieves the auxiliary timing which could automatically track the ECG signal.


Subject(s)
Humans , Electrocardiography , Heart-Assist Devices , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL